Human cellular retinaldehyde-binding protein has secondary thermal 9-cis-retinal isomerase activity.
نویسندگان
چکیده
Cellular retinaldehyde-binding protein (CRALBP) chaperones 11-cis-retinal to convert opsin receptor molecules into photosensitive retinoid pigments of the eye. We report a thermal secondary isomerase activity of CRALBP when bound to 9-cis-retinal. UV/vis and (1)H NMR spectroscopy were used to characterize the product as 9,13-dicis-retinal. The X-ray structure of the CRALBP mutant R234W:9-cis-retinal complex at 1.9 Å resolution revealed a niche in the binding pocket for 9-cis-aldehyde different from that reported for 11-cis-retinal. Combined computational, kinetic, and structural data lead us to propose an isomerization mechanism catalyzed by a network of buried waters. Our findings highlight a specific role of water molecules in both CRALBP-assisted specificity toward 9-cis-retinal and its thermal isomerase activity yielding 9,13-dicis-retinal. Kinetic data from two point mutants of CRALBP support an essential role of Glu202 as the initial proton donor in this isomerization reaction.
منابع مشابه
Cellular retinaldehyde binding protein-different binding modes and micro-solvation patterns for high-affinity 9-cis- and 11-cis-retinal substrates.
We use molecular dynamics (MD) simulations to determine the binding properties of different retinoid species to cellular retinaldehyde binding protein (CRALBP). The complexes formed by 9-cis-retinal or 11-cis-retinal bound to both the native protein and the R234W mutant, associated to Bothnia-retina dystrophy, are investigated. The presented studies are also complemented by analysis of the bind...
متن کاملMembrane-binding and enzymatic properties of RPE65.
Regeneration of visual pigments is essential for sustained visual function. Although the requirement for non-photochemical regeneration of the visual chromophore, 11-cis-retinal, was recognized early on, it was only recently that the trans to cis retinoid isomerase activity required for this process was assigned to a specific protein, a microsomal membrane enzyme called RPE65. In this review, w...
متن کاملRpe65 is a retinyl ester binding protein that presents insoluble substrate to the isomerase in retinal pigment epithelial cells.
Photon capture by a rhodopsin pigment molecule induces 11-cis to all-trans isomerization of its retinaldehyde chromophore. To restore light sensitivity, the all-trans-retinaldehyde must be chemically re-isomerized by an enzyme pathway called the visual cycle. Rpe65, an abundant protein in retinal pigment epithelial (RPE) cells and a homolog of beta-carotene dioxygenase, appears to play a role i...
متن کاملRpe65 Is the Retinoid Isomerase in Bovine Retinal Pigment Epithelium
The first event in light perception is absorption of a photon by an opsin pigment, which induces isomerization of its 11-cis-retinaldehyde chromophore. Restoration of light sensitivity to the bleached opsin requires chemical regeneration of 11-cis-retinaldehyde through an enzymatic pathway called the visual cycle. The isomerase, which converts an all-trans-retinyl ester to 11-cis-retinol, has n...
متن کاملMapping the ligand binding pocket in the cellular retinaldehyde binding protein.
Retinoid interactions determine the function of the cellular retinaldehyde binding protein (CRALBP) in the rod visual cycle where it serves as an 11-cis-retinol acceptor for the enzymatic isomerization of all-trans- to 11-cis-retinol and as a substrate carrier for 11-cis-retinol dehydrogenase (RDH5). Based on preliminary NMR studies suggesting retinoid interactions with Met and Trp residues, hu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 136 1 شماره
صفحات -
تاریخ انتشار 2014